ENERGY AUDIT REPORT

of

PUNE VIDYARTHI GRIHA'S,

CollegeofEngineeringand Technology&G K Pate (Wani)
Instituteof Management,
Vidyanagari, Parvati, Pune 411 009

Year: 2020-21

Prepared by:

Enrich Consultants

Yashashree, 26, Nirmal Bag Society, Near Muktangan English School, Parvati, Pune 411009 Phone: 09890444795 Email: enrichcons@gmail.com

MAHARASHTRA ENERGY DEVELOPMENT AGENCY

An ISO 9001 : 2000 Reg. no. : RQ 91 / 2462

Maharashtra Energy Development Agency

(Government of Maharashtra Institution)

Aundh Road, Opposite Spicer College Road, Near Commissionerate of Animal Husbandary,

Aundh, Punc, Maharashtra 411067

Ph No: 020-35000450

Email: eee@mahaurja.com, Web: www.mahaurja.com

ECN/2021-22/CR-14/1577

22nd April, 2021

FOR CLASS 'A'

We hereby certify that, the firm having following particulars is registered with *MAHARASHTRA ENERGY DEVELOPMENT AGENCY (MEDA)* under given category as "Energy Planner & Energy Auditor" in Maharashtra for Energy Conservation Programme of MEDA.

Name and Address of the firm

: M/s Enrich Consultants

Yashashree, Plot No. 26, Nirmal Bag Society, Near Muktangan English School, Parvati,

Pune - 411009.

Registration Category

: Empanelled Consultant for Energy Conservation

Programme for Class 'A'

Registration Number

: MEDA/ECN/2021-22/Class A/EA-03

- Energy Conservation Programme intends to identify areas where wasteful use of energy
 occurs and to evaluate the scope for Energy Conservation and take concrete steps to
 achieve the evaluated energy savings.
- MEDA reserves the right to visit at any time without giving prior information to verify quarterly activities performed by the firm and canceling the registration, if the information is found incorrect.
- This empanelment is valid till 21st April, 2023 from the date of registration, to carry out energy audits under the Energy Conservation Programme
- The Director General, MEDA reserves the right to cancel the registration at any time without assigning any reasons thereof.

General Manager (EC)

Enrich Consultants

Yashashree, 26, Nirmal Bag Society, Near Muktangan English School, Parvati, Pune 411 009 Tel: 09890444795 Email: enrichcons@gmail.com

Ref: EC/PVGCOETGKPOIM/20-21/01

Date: 10/8/2021

CERTIFICATE

This is to certify that we have conducted Energy Auditat Pune Vidyarthi Griha's College of Engineering and Technology& G K Pate(Wani) Institute of Management, Vidyanagari, Parvati, Pune 411 009 in the Academic year 2020-21.

.The College has adopted following Energy Efficient practices:

- Usage of Energy Efficient LED Fittings
- Usage of Energy Efficient BEE STAR Rated equipment
- Maximum usage of Day Lighting
- > Installation of 7.4 kWp Roof Top Solar PV Plant
- Modifications in the Chiller System at the Auditorium

We appreciate the support of Management, involvement of faculty members and students in the process of making the Campus Energy Efficient.

For Enrich Consultants,

A Y Mehendale,

Certified Energy Auditor

Micharda

EA-8192

INDEX

Sr. No	Particulars	Page No
I	Acknowledgement	5
11	Executive Summary	6
Ш	Abbreviations	8
1	Introduction	9
2	Study of Connected Load	10
3	Study of Present Energy Consumption	11
4	Carbon Foot Printing	13
5	Study of Usage of Alternate Energy	15
6	Study of LED Lighting	16

ACKNOWLEDGEMENT

We Enrich Consultants, Pune, express our sincere gratitude to the management of Pune Vidyarthi Griha's College of Engineering and Technology& G K Pate(Wani) Institute of Management, Vidyanagari, Parvati, Pune 411 009, for awarding us the assignment of Energy Audit of their Campus for the Year: 2020-21.

We are thankful to all the staff members for helping us during the field study.

EXECUTIVE SUMMARY

1.Pune Vidyarthi Griha's College of Engineering & Technology& G K Pate (Wani) Institute of Management, Vidyanagari, Parvati, Puneuses Energy in the form of Electrical Energyused for various Electrical Equipment, office & other facilities.

2. Present Energy Consumption& CO₂ Emission:

No	Parameter/ Value	Energy Purchased, kWh	CO ₂ Emissions, MT
1	Total	125758	113.18
2	Maximum	13398	12.06
3	Minimum	8036	7.23
4	Average	10479.83	9.43

3. Energy Conservation projects already installed:

- Usage of Energy Efficient LED fittings
- Usage of BEE STAR Rated Equipment
- Maximum Usage of Day Lighting
- Installation of 7.4 kWpRoof Top Solar PV Plant.
- Modifications in the Chiller System at the Auditorium

4. Usage of Alternate Energy:

- The College has installed Roof Top Solar PV Plant of Capacity 7.4 kWp.
- The Energy purchased from MSEDCL is 125758 kWh
- The Energy Generated by Roof Top Solar PV Plant is8880 kWh
- The percent of usage of Alternate Energy to Annual Energy Demand is 6.60%

5. Usage of LED Lighting:

- The Total Lighting Load of the College is 35.55 kW.
- The LED Lighting Load is 10.35 kW.
- The percentage of Annual LED Lighting to Annual Lighting Demand is 29.12 %.

6. Recommendations:

- Replacement of old lighting by LED Lighting, as per the budget availability
- Increase in Roof Top Solar PV Plant Capacity, as per the budget availability

7. Assumptions:

- 1. 1 kWhof Electrical Energy releases 0.9 Kg of CO2into atmosphere
- 2. Annual Solar Energy Generation Days: 300 Nos

8. References:

- For CO₂ Emissions Calculation: <u>www.tatapower.com</u>
- For Solar PV Energy Generation: <u>www.solarrooftop.gov.in</u>

ABBREVIATIONS

LED : Light Emitting Diode

MSEDCL : Maharashtra State Electricity Distribution Company Limited

PVG : Pune Vidyarthi Griha

COET : College of Engineering and Technology

IOM : Institute of Management

BEE : Bureau of Energy Efficiency

FTL : Fluorescent Tube Light

PV : Photo Voltaic

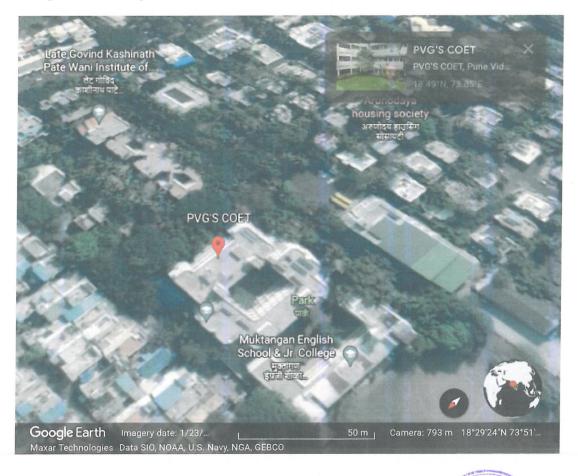
Kg : Kilo Gram

kWh : kilo-Watt Hour

 CO_2 : Carbon Di Oxide

MT : Metric Ton

CHAPTER-I INTRODUCTION

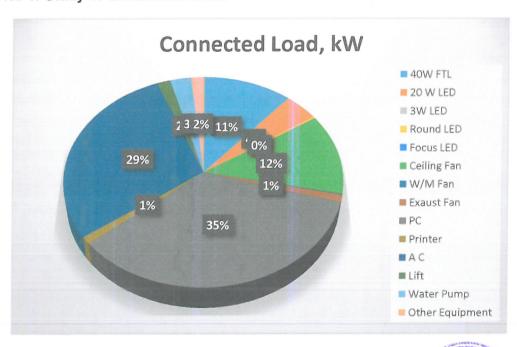

1.1 Objectives:

- 1. To study present Energy Consumption
- 2. To Study the present CO₂ emissions
- 3. To study usage of Alternate Energy
- 4. To study usage of LED Lighting

1.2Table No 1: General Details of the College:

No	Head	Particulars		
1	Name of Institution	Pune Vidyarthi Griha's College of Engineering & Technology & G K Pate (Wani) Institute of Management		
2	Address	Vidyanagari, Pune 411 009		
3	Year of Establishment	1985		

1.3 Google Earth Image:


CHAPTER-II STUDY OF CONNECTED LOAD

The major contributors to the connected load of the College include:

Table No 2: Study of Equipment wise Connected Load:

No	Equipment	Qty	Load, W/Unit	Load, kW
1	40W FTL	630	40	25.2
2	20 W LED	483	20	9.66
3	3W LED	11	3	0.03
4	Round LED	33	16	0.53
5	Focus LED	12	11	0.13
6	Ceiling Fan	426	65	27.69
7	W/M Fan	5	52	0.26
8	Exhaust Fan	49	52	2.55
9	PC	513	150	76.95
10	Printer	14	175	2.45
11	AC	36	1800	64.8
12	Lift	1	3730	3.73
13	Water Pump	1	5968	5.97
14	Other Equipment	25	150	3.75
15	Total			224

Chart No 1: Study of Connected Load:



CHAPTER-III STUDY OF PRESENT ENERGY CONSUMPTION

In this chapter, we present the analysis of last year Electricity Bills Table No 3: Electrical Bill Analysis- 2020-21:

No	Month	Energy Purchased, kWh
1	Jul-20	8780
2	Aug-20	9828
3	Sep-20	9286
4	Oct-20	11640
5	Nov-20	10952
6	Dec-20	12138
7	Jan-21	12470
8	Feb-21	10824
9	Mar-21	13398
10	Apr-21	8954
11	May-21	8036
12	Jun-21	9452
13	Total	125758
14	Maximum	13398
15	Minimum	8036
16	Average	10479.83

Chart No 2: Variation in Monthly Energy Consumption:

Table No4: Important Parameters:

No	Parameter/ Variation	Energy Purchased, kWh
1	Total	125758
2	Maximum	13398
3	Minimum	8036
4	Average	10479.83

CHAPTER-IV CARBON FOOTPRINTING

A Carbon Foot print is defined as the Total Greenhouse Gas emissions, emitted due to various activities.

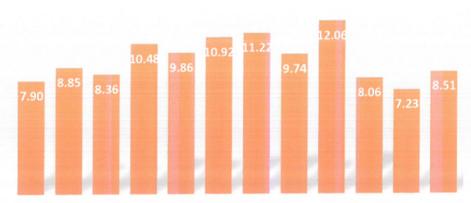
In this we compute the emissions of Carbon-Di-Oxide, by usage of the various forms of Energy used by the College for performing its day to day activities

The College uses Electrical Energy for various Electrical gadgets.

Basis for computation of CO₂ Emissions:

• 1 kWh of Electrical Energy releases 0.9 Kg of CO2 into atmosphere

Based on the above Data we compute the CO_2 emissions which are being released in to the atmosphere by the College due to its Day to Day operations


Table No5: Month wise CO₂ Emissions:

No	Month	Energy Purchased, kWh	CO ₂ Emissions, MT
1	Jul-20	8780	7.90
2	Aug-20	9828	8.85
3	Sep-20	9286	8.36
4	Oct-20	11640	10.48
5	Nov-20	10952	9.86
6	Dec-20	12138	10.92
7	Jan-21	12470	11.22
8	Feb-21	10824	9.74
9	Mar-21	13398	12.06
10	Apr-21	8954	8.06
11	May-21	8036	7.23
12	Jun-21	9452	7.41
13	Total	125758	113.18
14	Maximum	13398	12.06
15	Minimum	8036	7.23
16	Average	10479.83	9.43

Chart No 3: Month wise CO₂Emissions:

CO2 Emissions, MT

Jul-20 Aug-20 Sep-20 Oct-20 Nov-20 Dec-20 Jan-21 Feb-21 Mar-21 Apr-21 May-21 Jun-21

Table No 6: Important Parameters:

No	Parameter/ Variation	Energy Purchased, kWh	CO ₂ Emissions, MT
1	Total	125758	113.18
2	Maximum	13398	12.06
3	Minimum	8036	7.23
4	Average	10479.83	9.43

Page 14

CHAPTER-V STUDY OF USAGE OF ALTERNATE ENERGY

The College has installed Roof Top Solar PV Plant of Capacity 7.4 kWp

We now calculate the percentage of usage of Alternate Energy to Annual Energy Demand.

Table No 7: % Usage of Alternate Energy to Annual Energy Demand:

No	Particulars	Value	Unit
1	Energy Purchased from MSEDCL	125758	kWh
2	Installed Roof Top Solar PV Plant Capacity	7.4	kWp
3	Average Daily Energy Generated	4	kWh/kWp
4	Annual Generation Days	300	Nos
5	Annual Solar Energy Generated	8880	kWh
6	Total Energy Demand = (1) + (5)	134638	kWh
7	% of Usage of Alternate Energy to Total Annual Energy Demand= (5)*100/ (6)	6.60	%

CHAPTER VI STUDY OF USAGE OF LED LIGHTING

In this chapter, we compute the percentage of usage of LED Lighting to Annual Lighting power requirement.

Table No 8: Percentage of Usage of LED Lighting to Annual Lighting Load

No	Particulars	Value	Unit
1	No of 40 W FTL fittings	630	Nos
2	No of 20 W LED fitting	483	Nos
3	No of 3 W LED Fittings	11	Nos
4	No of 16 W LED Down Lighter	33	Nos
5	No of 11 W Focus LEDs	12	Nos
6	Load/Unit of 40 W FTL fitting	40	W/Unit
7	Load/Unit of 20 W LED fitting	20	W/Unit
8	Load/Unit of 3 W LED fitting	3	W/Unit
9	Load/Unit of 16 W LED fitting	16	W/Unit
10	Load/Unit of 11 W LED fitting	11	W/Unit
11	Demand of 40 W FTL fittings	25.2	kW
12	Demand of 20 W LED fitting	9.66	kW
13	Demand of 3 W LED fitting	0.033	kW
14	Demand of 16 W LED fitting	0.528	kW
15	Demand of 11 W LED fitting	0.132	kW
16	Total Lighting Load=11+12+13+14+15	35.55	kW
17	Total LED Lighting Load=12+13+14+15	10.35	kW
18	% of usage of LED lights to Total Lighting Demand = (17)*100/(16)	29.12	%

GREEN AUDIT REPORT

of
PUNE VIDYARTHI GRIHA'S,
College of Engineering and Technology & G K Pate (Wani)
Institute of Management,
Vidyanagari, Parvati, Pune 411 009

Year: 2020-21

Prepared by:

Enrich Consultants

Yashashree, 26, Nirmal Bag Society, Near Muktangan English School, Parvati, Pune 411009 Phone: 09890444795 Email: enrichcons@gmail.com

MAHARASHTRA ENERGY DEVELOPMENT AGENCY

An ISO 9001 : 2000 Reg. no. : RQ 91 / 2462

Maharashtra Energy Development Agency

(Government of Maharashtra Institution)

Aundh Road, Opposite Spicer College Road, Near Commissionerate of Animal Husbandary,

Aundh, Pune, Maharashtra 411067

Ph No: 020-35000450

Email: eee@mahaurja.com, Web: www.mahaurja.com

ECN/2021-22/CR-14/1577

22nd April, 2021

CERTIFICATE OF REGISTRATION FOR CLASS 'A'

We hereby certify that, the firm having following particulars is registered with *MAHARASHTRA ENERGY DEVELOPMENT AGENCY (MEDA)* under given category as "Energy Planner & Energy Auditor" in Maharashtra for Energy Conservation Programme of MEDA.

Name and Address of the firm

: M/s Enrich Consultants

Yashashree, Plot No. 26, Nirmal Bag Society, Near Muktangan English School, Parvati,

Pune - 411009.

Registration Category

: Empanelled Consultant for Energy Conservation

Programme for Class 'A'

Registration Number

: MEDA/ECN/2021-22/Class A/EA-03

- Energy Conservation Programme intends to identify areas where wasteful use of energy
 occurs and to evaluate the scope for Energy Conservation and take concrete steps to
 achieve the evaluated energy savings.
- MEDA reserves the right to visit at any time without giving prior information to verify quarterly activities performed by the firm and canceling the registration, if the information is found incorrect.
- This empanelment is valid till 21st April, 2023 from the date of registration, to carry out energy audits under the Energy Conservation Programme
- The Director General, MEDA reserves the right to cancel the registration at any time without assigning any reasons thereof.

General Manager (EC)

Enrich Consultants

Yashashree, 26, Nirmal Bag Society, Near Muktangan English School, Parvati, Pune 411 009

Tel: 09890444795 Email: enrichcons@gmail.com

Ref: EC/PVGCOETGKPOIM/20-21/02

Date: 10/8/2021

CERTIFICATE

This is to certify that we have conducted Green Audit at Pune Vidyarthi Griha's College of Engineering and Technology & G K Pate(Wani) Institute of Management, Vidyanagari, Parvati, Pune 411 009 in the Academic year 2020-21.

The College has adopted following Green Initiatives:

- Usage of Energy Efficient LED Light Fitting
- Installation of 7.4 kWp Roof Top Solar PV Plant
- Maximum Usage of Day Lighting
- Segregation of Waste at source by provision of Bins
- Implementation of Bio Composting Unit
- Maintenance of good Internal Road
- Tree Plantation in the campus
- Provision of Ramp for Divyangajan
- Provision of Sanitary Waste Incinerator
- Creation of Awareness about Resource Conservation by Display of Posters

We appreciate the support of Management, involvement of faculty members and students in the process of Energy Conservation & making the campus Green.

For Enrich Consultants,

Muchandel

A Y Mehendale,

Certified Energy Auditor

EA-8192

INDEX

Sr. No	Particulars	Page No
Sr. 140	Aakaawladgament	5
l	Acknowledgement	6
	Executive Summary	8
111	Abbreviations	0
1	Introduction	9
2	Study of Present Energy Consumption	10
	Study of Carbon Foot printing	12
3		14
4	Study of Usage of Renewable Energy	15
5	Study of Waste Management	
6	Study of Water Conservation	17
7	Study of Green & Sustainable Practices	18
1	Annexure	
		21
1	List of Trees & Plants	

ACKNOWLEDGEMENT

We Enrich Consultants, Pune, express our sincere gratitude to the management of Pune Vidyarthi Griha's College of Engineering and Technology & G K Pate(Wani) Institute of Management, Vidyanagari, Parvati, Pune 411 009, for awarding us the assignment of Green Audit of their Campus for the Year: 2020-21.

We are thankful to all the staff members for helping us during the field study.

EXECUTIVE SUMMARY

1.Pune Vidyarthi Griha's College of Engineering & Technology & G K Pate (Wani) Institute of Management, Vidyanagari, Parvati, Puneuses Energy in the form of Electrical Energyused for various Electrical Equipment, office & other facilities.

2. Present Energy Consumption & CO₂ Emissions:

Parameter/ Value	Energy Purchased, kWh	CO_2 Emissions, MT
Total	125758	113.18
Maximum	13398	12.06
	8036	7.23
	10479.83	9.43
	Value	Value kWh Total 125758 Maximum 13398 Minimum 8036

3. Various initiatives taken for Energy Conservation:

- Usage of Energy Efficient BEE STAR Rated Equipment
- Usage of Energy Efficient LED Lighting
- Maximum Usage of Day Lighting
- Installation of 7.4 kWpRoof Top Solar PV Plant
- Modifications in the Chiller System at the Auditorium

4. Usage of Renewable Energy:

- The College has installed Roof Top Solar PV Plant of Capacity 7.4 kWp.
- The Energy Generated by Roof Top Solar PV Plant is8880 kWh
- The reduction in CO₂ Emissions is 7.99 MT

5. Waste Management:

5.1 Segregation of Waste at Source:

The recyclable waste, like paper, plastic waste is segregated at source by making provision of different waste collection bins. The Plastic Waste is handed over to Authorized Plastic Recyclers.

5.2 Organic Waste Management:

The College has installed Bio Composting unit to convert the Organic Waste into Bio compost. The same is used into own garden.

5.3E-Waste Management:

The E-Waste is disposed of through Authorized E-Waste collecting agency.

* And F

6. Water Conservation:

It is recommended to make proper channels to collect the rain water and store the same in the open well which is in operation as on today,

The Collegeis also planning to make one open well alive, which is not in use, at present.

7. Green & Sustainable Initiatives

- Maintenance of good Internal Road
- Maintenance of Internal Garden
- Provision of Ramp for Divyangajan
- Provision of Sanitary Waste Incinerator
- Display of Posters on Resource Conservation

8. Recommendations:

- Replacement of old lighting by LED Lighting, as per the budget availability
- Increase in Solar PV Plant Capacity, as per the budget availability
- > Carry out repairs of internal road section, as per the budget availability

9. Notes & Assumptions:

- 1 kWhof Electrical Energy releases 0.9 Kg of CO₂ into atmosphere
- Annual Solar Energy Generation Days: 300 Nos

10. References:

- For CO₂ Emissions: <u>www.tatapower.com</u>
- For Solar PV Energy Generation: www.solarrooftop.gov.in

ABBREVIATIONS

BEE Bureau of Energy Efficiency

PVG Pune Vidyarthi Griha

COET College of Engineering & Technology

IOM Institute of Management

kWh Kilo Watt Hour

LPD Liters Per Day

Kg Kilo Gram

MT Metric Ton

CO₂ Carbon Di Oxide

Qty Quantity

CHAPTER-I INTRODUCTION

1.1 Objectives:

- 1. To study present Energy Consumption
- 2. To Study CO₂ emissions
- 3. To study usage of Renewable Energy
- 4. Study of Waste Management
- 5. Study of Water Conservation
- 6. Study of Green & Sustainable Practices

1.2 General Details of College: Table No 1:

		Particulars
No	Head	
1	Name of Institution	Pune Vidyarthi Griha's College of Engineering & Technology & G K Pate (Wani) Institute of Management
2	Address	Vidyanagari, Pune 411 009
3	Year of Establishment	1985

1.3 Google Earth Image:

CHAPTER-II STUDY OF PRESENT ENERGY CONSUMPTION

In this chapter, we present the analysis of last year Electricity Bills **Table No 2: Electrical Bill Analysis- 2020-21:**

No	Month	Energy Purchased, kWh
1	Jul-20	8780
2	Aug-20	9828
3	Sep-20	9286
4	Oct-20	11640
5	Nov-20	10952
6	Dec-20	12138
7	Jan-21	12470
8	Feb-21	10824
9	Mar-21	13398
10	Apr-21	8954
11	May-21	8036
12	Jun-21	9452
13	Total	125758
14	Maximum	13398
15	Minimum	8036
16	Average	10479.83

Chart No 1: Variation in Monthly Energy Consumption:

Table No 3: Important Parameters:

No	Parameter/ Variation	Energy Consumed, kWh
1	Total	125758
2	Maximum	13398
3	Minimum	8036
4	Average	10479.83

CHAPTER III STUDY OF CARBON FOOTPRINTING

A Carbon Foot print is defined as the Total Greenhouse Gas emissions, emitted due to various activities. In this we compute the emissions of Carbon-Di-Oxide, by usage of the various forms of Energy used by the College for performing its day to day activities

The College uses Electrical Energy for various Electrical gadgets.

Basis for computation of CO₂ Emissions:

The basis of Calculation for CO₂ emissions due to Electrical Energy is as under

1 kWh of Electrical Energy releases 0.9 Kg of CO₂ into atmosphere.

Based on the above Data we compute the CO_2 emissions which are being released in to the atmosphere by the College due to its Day to Day operations.

Table No4: Month wise CO₂ Emissions:

No	Month	Energy Purchased, kWh	CO ₂ Emissions, MT
1	Jul-20	8780	7.90
2	Aug-20	9828	8.85
3	Sep-20	9286	8.36
4	Oct-20	11640	10.48
5	Nov-20	10952	9.86
6	Dec-20	12138	10.92
	Jan-21	12470	11.22
8	Feb-21	10824	9.74
9	Mar-21	13398	12.06
10	Apr-21	8954	8.06
11	May-21	8036	7.23
12	Jun-21	9452	7.41
13	Total	125758	113.18
14	Maximum	13398	12.06
15	Minimum	8036	7.23
16	Average	10479.83	9.43

Chart No 2: Month wise CO₂Emissions:

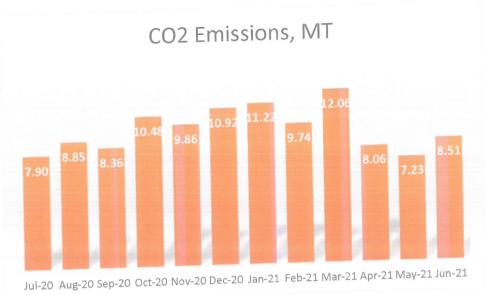


Table No 5: Variation in Important Parameters:

No	Parameter/ Variation	Energy Consumed, kWh	CO2 Emissions, MT
1	Total	125758	113.18
2	Maximum	13398	12.06
3	Minimum	8036	7.23
4	Average	10479.83	9.43

CHAPTER IV STUDY OF USAGE OF RENEWABLE ENERGY

The College has installed Roof Top Solar PV Plant of Capacity **7.4 kWp** We now calculate the reduction in $\rm CO_2$ Emission due to Solar PV Plant.

Table No 6: Computation of Reduction in CO₂ Emission:

D.1	Particulars	Value	Unit
No		7.4	kWp
1	Installed Roof Top Solar PV Plant Capacity	4	kWh/kWp
2	Average Daily Energy Generated	300	Nos
3	Annual Generation Days		kWh
4	Annual Solar Energy Generated	8880	
5	1 kWh of Electrical Energy is equivalent to	0.9	Kg of CO ₂
6	Annual Reduction in CO ₂ Emission = (4) * (5) /1000	7.992	MT

CHAPTER V STUDY OF WASTE MANAGEMENT

5.1 Segregation of Waste at source:

The recyclable waste, like paper, plastic waste is segregated at source by making provision of different waste collection bins. The Plastic Waste is handed over to Authorized Plastic Recyclers.

Photograph of Waste Collection Bins:

5.2Organic Waste Management:

The recyclable waste, like paper waste is handed over to authorized waste collecting agent for further recycling.

Photograph of Bio Composting Unit:

5.3E-Waste Management: The E-Waste is disposed of through Authorized Agency.

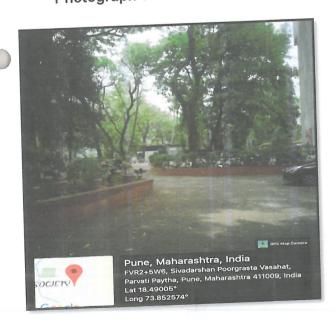
CHAPTER-VI STUDY OF WATER CONSERVATION

It is recommended to make proper channels to collect the rain water and store the same in the open well which is in operation as on date.

The Collegeis also planning to make one open well alive, which is not in use, at present.

CHAPTER-VII STUDY OF GREEN & SUSTAINABLE PRACTICES

7.1 Pedestrian Friendly Roads:


The College has well maintained internal road to facilitate the easy movement of the students within the campus.

Photograph of Internal Road:

7.2 Internal Tree Plantation:

The College has well maintained landscaped garden in the campus. Photograph of Internal Lawn and Tree plantation:

7.3 Provision of Ramp:

For easy movement of Divyangajan, the College has made provision of Ramp at the main entrance.

Photograph of Ramp:

7.4 Provision of Sanitary Waste Incinerator:

The College has made provision of Sanitary Waste Incinerator for disposal of Sanitary Waste.

Photograph of Sanitary Waste Incinerator:

H CO

7.5 Creation of Awareness about Resource Conservation:

The College has displayed posters emphasizing on importance of Resource Conservation.

Photograph of Poster on Energy Conservation:

ANNEXURE-I

LIST OF TREES AND PLANTS

List of Trees:

No Common Name of Tree		Qty
1	Ashok	64
2	Coconut	45
3	English Chicha	10
4	Fanas	1
5	Mango	8
6	Shevga	1
7	Bel	2
8	Neem	1
9	Sonchampa	4
10	Jamun	6
11	Ramfal	2
12	Gulmohor	17
13	Cheru	1
14	Subabhul	35
15	Kaduneem	25
16	Karanj	3
17	Tabobia	3
18	Bor	5
19	Valava	1
20	Jackranda	3
21	Umbar	6
	Spalordia	2
22	Bakanlimb	3
23	Raintree	11
24	Kashid	7
25	Fan Palm Tree	1
26	Cyprus Tree	3
27	Parijatak	2
28	Red Champa	2
29	Bamboo Bet	2
30		1
31 Putravanti 32 Guava 33 Shisu 34 Bakul		4
		1
		1
34		6
35 Supari 36 Traveller Palm		2
36		3
37 Pestoforum 38 Bottle Brush		3
		6
39	Ficus	

Am Spage 21

40	Gol	5
41	Kanchan	3
		2
42	Apta	4
43	Bahava	2
44	Booch	2
45	Silver Oak	2
46	Vachava	2
47	White Champa	
48	Almond	2
49	Hirada	3
50	Amala	2
51	Australian Babhul	4
52	Vad	3
53	Peltoforum	4
54	Karanj	5
55	Sitaranjan	1
	Arjun	2
56 57	Total	351

List of Plants:

No	Common Name
1	Jaswand
2	Duranta
3	Drecena
4	Coleus
5	Saptaparni

Photograph of Heritage Tree:

ENVIRONMENTAL AUDIT REPORT

of

PUNE VIDYARTHI GRIHA'S,

College of Engineering and Technology & G K Pate (Wani)
Institute of Management,
Vidyanagari, Parvati, Pune 411 009

Year: 2020-21

Prepared by:

Enrich Consultants

Yashashree, 26, Nirmal Bag Society,
Near Muktangan English School, Parvati, Pune 411009
Phone: 09890444795 Email: enrichcons@gmail.com

MAHARASHTRA ENERGY DEVELOPMENT AGENCY

An ISO 9001 : 2000 Reg. no. : RQ 91 / 2462

Maharashtra Energy Development Agency

(Government of Maharashtra Institution)

Aundh Road, Opposite Spicer College Road, Near Commissionerate of Animal Husbandary,

Aundh, Pune, Maharashtra 411067

Ph No: 020-35000450

Email: eee@mahaurja.com, Web: www.mahaurja.com

ECN/2021-22/CR-14/1577

22nd April, 2021

CERTIFICATE OF REGISTRATION FOR CLASS 'A'

We hereby certify that, the firm having following particulars is registered with *MAHARASHTRA ENERGY DEVELOPMENT AGENCY (MEDA)* under given category as "Energy Planner & Energy Auditor" in Maharashtra for Energy Conservation Programme of MEDA.

Name and Address of the firm

: M/s Enrich Consultants

Yashashree, Plot No. 26, Nirmal Bag Society, Near Muktangan English School, Parvati,

Pune - 411009.

Registration Category

: Empanelled Consultant for Energy Conservation

Programme for Class 'A'

Registration Number

: MEDA/ECN/2021-22/Class A/EA-03

- Energy Conservation Programme intends to identify areas where wasteful use of energy
 occurs and to evaluate the scope for Energy Conservation and take concrete steps to
 achieve the evaluated energy savings.
- MEDA reserves the right to visit at any time without giving prior information to verify quarterly activities performed by the firm and canceling the registration, if the information is found incorrect.
- This empanelment is valid till 21st April, 2023 from the date of registration, to carry out energy audits under the Energy Conservation Programme
- The Director General, MEDA reserves the right to cancel the registration at any time without assigning any reasons thereof.

General Manager (EC)

Enrich Consultants

Yashashree, 26, Nirmal Bag Society, Near Muktangan English School, Parvati, Pune 411 009 Tel: 09890444795 Email: enrichcons@gmail.com

Ref: EC/PVGCOS/20-21/03Date: 10/8/2021

CERTIFICATE

This is to certify that we have conducted Environmental Auditat Pune Vidyarthi Griha's College of Engineering and Technology & G K Pate(Wani) Institute of Management, Vidyanagari, Parvati, Pune 411 009 in the Academic year 2020-21.

The College has adopted following Environment Friendly Practices:

- Usage of Energy Efficient LED Light Fitting
- Maximum Usage of Day Lighting
- Installation of 7.4 kWp Roof Top Solar PV Plant
- Provision of Separate bins for Dry & Wet Waste
- Provision of Bio Composting Pit for conversion of Organic Waste
- > Tree Plantation in the campus
- Provision of Sanitary Waste Incinerator
- Creation of awareness about Resource Conservation by displaying posters

We appreciate the support of Management, involvement of faculty members and students inthe process of Energy Conservation & making the campus Green.

For Enrich Consultants,

A Y Mehendale,

Certified Energy Auditor

EA-8192

INDEX

	Particulars	Page No
Sr. No		5
I	Acknowledgement	6
П	Executive Summary	8
III	Abbreviations	0
		9
1	Introduction CO Emission	12
2	Study of Consumption of Resources & CO ₂ Emission	14
3	Study of CO ₂ Emission Reduction	
4	Study of Indoor Air Quality	15
	Study of Indoor Comfort Condition Parameters	18
5		20
6	Study of Waste Management	22
7	Study of Water Conservation	23
8	Study of Environment Friendly Initiatives	23
	Annexure	
1	Various Standards in respect of Indoor Air Quality, Water, Noise & Indoor Comfort Condition	25

ACKNOWLEDGEMENT

We Enrich Consultants, Pune, express our sincere gratitude to the management of Pune Vidyarthi Griha's College of Engineering and Technology & G K Pate(Wani) Institute of Management, Vidyanagari, Parvati, Pune 411 009, for awarding us the assignment of Environmental Audit of their Campus for the Year: 2020-21.

We are thankful to all the staff members for helping us during the field study.

CH CO

Page 5

EXECUTIVE SUMMARY

1.Pune Vidyarthi Griha's College of Engineering & Technology & G K Pate (Wani) Institute of Management, Vidyanagari, Parvati, Puneuses Energy in the form of Electrical Energyused for various Electrical Equipment, office & other facilities.

2. Various Pollution due to Institute Activities:

- ➤ Air pollution: Mainly CO₂ on account of Electricity Consumption
- Solid Waste: Bio degradable Garden Waste
- Liquid Waste: Human liquid waste

3. Present Energy Consumption & CO₂ Emissions:

No	Parameter/ Value	Energy Purchased, kWh	CO ₂ Emissions, MT
		125758	113.18
1	Total	13398	12.06
2	Maximum	8036	7.23
3	Minimum		9.43
4	Average	10479.83	3.40

4. Various initiatives taken for Energy Conservation:

- Usage of Energy Efficient BEE STAR Rated Equipment
- Usage of Energy Efficient LED Lighting
- Maximum Usage of Day Lighting
- Installation of 7.4 kWp Roof Top Solar PV Plant
- Modifications in the Chiller System at the Auditorium

5. Usage of Renewable Energy& Reduction in CO₂ Emission:

- The College has installed Roof Top Solar PV Plant of Capacity 7.4 kWp.
- The Energy Generated by Roof Top Solar PV Plant is8880 kWh
- The reduction in CO₂ Emissions is 7.99 MT

6. Indoor Air Quality Parameters:

	(- N/alua	AQI	PM-2.5	PM-10
No	Parameter/Value			82
1	Maximum	115	70	
		90	54	64
2	Minimum			

7. Indoor Comfort Conditions:

No	Parameter/Value	Temperature,	Humidity,	Lux Level	Noise Level, dB
			F.4	237	61
1	Maximum	30.5	51		40
		28.1	44	102	40
2	Minimum				The same of the sa

8. Waste Management:

8.1 Segregation of Waste at Source:

The recyclable waste, like paper, plastic waste is segregated at source by making provision of different waste collection bins. The Plastic Waste is handed over to Authorized Plastic Recyclers.

8.2 Organic Waste Management:

The College has installed Bio Composting unit to convert the Organic Waste into Bio compost. The same is used into own garden.

8.3E-Waste Management:

The E-Waste is disposed of through Authorized E-Waste collecting agency.

9. Water Conservation:

It is recommended to make proper channels to collect the rain water and store the same in the open well which is in operation as on today,

The Collegeis also planning to make one open well alive, which is not in use, at present.

10. Environment Friendly Initiatives

- Maintenance of Internal Garden
- Provision of Sanitary Waste Incinerator
- Creation of awareness by display of Posters on Resource Conservation

11. Recommendations:

- Replacement of old lighting by LED Lighting, as per the budget availability
- Increase in Solar PV Plant Capacity, as per the budget availability
- Carry out repairs of internal road section, as per the budget availability

12. Notes &AssumptionsNotes &Assumptions:

- 1 kWhof Electrical Energy releases 0.9 Kg of CO₂ into atmosphere
- Annual Solar Energy Generation Days: 300 Nos

13. References:

- For CO₂ Emissions: www.tatapower.com
- For Roof Top Solar Energy generation: www.solarrooftop.gov.in
- For Various Indoor Air Parameters: www.ishrae.com
- For AQI &Water Quality Standards: www.cpcb.com

ABBREVIATIONS

Kg : Kilo Gram

PVG : Pune Vidyarthi Griha

MSEDCL : Maharashtra State Distribution Company Limited

MT : Metric Ton

kWh : kilo-Watt Hour

LPD : Liters per Day

LED : Light Emitting Diode

AQI : Air Quality Index

PM-2.5 : Particulate Matter of Size 2.5 Micron

PM-10 : Particulate Matter of Size 10 Micron

CPCB : Central Pollution Control Board

ISHRAE : The Indian Society of Heating & Refrigerating & Air Conditioning Engineers

CHAPTER-I INTRODUCTION

1.11mportant Definitions:

1.1.1 Environment: Definition as per environment Protection Act: 1986

Environment includes water, air and land and the inter-relationship which exists among and between Water, Air, Land and Human beings, other living creatures, plants microorganism and property

1.1.2. Environmental Audit: Definition:

An audit which aims at verification and validation to ensure that various environmental laws are compiled with and adequate care has been taken towards environmental protection and preservation

According to UNEP, 1990, "Environmental audit can be defined as a management tool comprising systematic, documented and periodic evaluation of how well environmental organization management and equipment are performing with an aim of helping to regularize the environment

1.1.3. Environmental Pollutant: means any solid, liquid and gaseous substance present in the concentration as may be, or tend to be, injurious to Environment.

1.1.4. Relevant Environmental Laws in India: Table No-1:

1927	The Indian Forest Act	
1972	The Wildlife Protection Act	
1974	The Water (Prevention and Control of Pollution) Act The Water (Prevention and Control of Pollution) Cess Act	
1977	The Water (Prevention & Control of Pollution) Cess Act The Water (Prevention & Control of Pollution) Cess Act	
1980	The Forest (Conservation) Act The Air (Prevention and Control of Pollution) Act	
1981	The Air (Prevention and Control of Francisco Act	
1986	The Public Liability Insurance Act	
1991	The Biological Diversity Act	
2002	The National Green Tribunal Act	
2010	THOTAL	

1.1.5. Some Important Environmental Rules in India: Table No-2:

01110	
	Hazardous Waste (Management and Handling) Rules
1989	Manufacture, Storage and Import of Hazardous Chemical Rules Manufacture, Storage and Import and Handling) Rules
1989	Manufacture, Storage and Import of Hazardon Rules
2000	Manufacture, Storage and Important and Handling) Rules Municipal Solid Waste (Management and Handling) Rules
1998	The Biomedical Waste (Management and Handling) Rules
1999	The Environment (Siting for Industrial Projects) Rules
2000	- " " (Degulation and (Ontrol) Rules
2000	Ozone Depleting Substances (Regulation and Control) Have
	E-waste (Management and Handling) Rules
2011	E-waste (waits)

Am Page 9

	Line and Procedure) Rules
2011	National Green Tribunal (Practices and Procedure) Rules
2011	Plastic Waste (Management and Handling) Rules

1.1.6 National Environmental Plans & Policy Documents: Table No-3:

1.	National Forest Policy, 1988
2.	National Water Policy, 2002
3.	National Vivaler Folicy, 2002 National Environment Policy or NEP (2006) National Conservation Strategy and Policy Statement on Environment and Development,
4.	
5.	Policy Statement for Abatement of Pollution (1992)
6.	National Action Plan on Climate Change Vision Statement on Environment and Human Health Page 27th Institute)
7.	Vision Statement on Environment and Figure 1. Technology Vision 2030 (The Energy Research Institute) Technology Vision 2030 (The Energy Research Institute)
8.	Technology Vision 2030 (The Energy Research Institute) Technology Vision 2030 (The Energy Research Institute) Addressing Energy Security and Climate Change (MoEF and Bureau of Energy Efficiency Addressing Energy India's Position on Climate Change Issues (MoEF)
9.	Addressing Energy Security and Climate Change (MoEF and Baroas 5: MoEF) The Road to Copenhagen; India's Position on Climate Change Issues (MoEF)
10	The Road to Copermagon, make a

1.20bjectives:

- 1. To study Resource Consumption& CO₂ Emissions
- 2. To Study CO₂ Emission Reduction
- 3. To study Indoor Air Quality Parameters
- 4. To study Indoor Comfort Condition Parameters
- 5. To Study Waste Management
- 6. To Study Rain Water Harvesting
- 7. To Study Environmental Friendly Initiatives

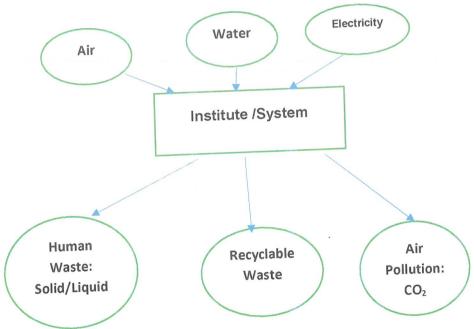
1.3 General Details of Institute: Table No 4:

1.5 001	ierai Botano		
No	Head	Particulars	
1	Name of Institution	Pune Vidyarthi Griha's College of Engineering & Technology & G K Pate (Wani) Institute of Management	
2	Address	Vidyanagari, Pune 411 009	
3	Year of Establishment	1985	

Page 10

Enrich Consultants, Pune

1.4 Google Earth Image:


CHAPTER-II STUDY OF CONSUMPTION OF RECOURCES & CO₂ EMISSION

The Institute consumes following basic/derived Resources:

- 1. Air
- 2. Water
- 3. Electrical Energy

We try to draw a schematic diagram for the Institute System & Environment as under.

Chart No 1: Representation of Institute as System & Study of Resources & Waste

Now we compute the Generation of CO_2 on account of consumption of Electrical Energy.

The basis of Calculation for CO₂ emissions due to Electrical Energy is as under

1 kWh of Electrical Energy releases 0.9 Kg of CO₂ into atmosphere

Table No 5: Study of Consumption of Electrical Energy & CO₂ Emissions: 20-21:

No	Month	Energy Purchased, kWh	CO ₂ Emissions, MT
1	Jul-20	8780	7.90
1		9828	8.85
2	Aug-20	9286	8.36
3	Sep-20	11640	10.48
4	Oct-20		9,86
5	Nov-20	10952	10.92
6	Dec-20	12138	10.92

Am Am

7	Jan-21	12470	11.22
7		10824	9.74
8	Feb-21	13398	12.06
9	Mar-21		8.06
10	Apr-21	8954	7.23
11	May-21	8036	7.41
12	Jun-21	9452	
13	Total	125758	113.18
14	Maximum	13398	12.06
15	Minimum	8036	7.23
16	Average	10479.83	9.43
10	711313		

Chart No 2: Month wise CO₂Emissions:

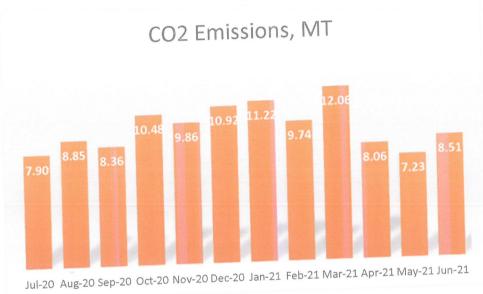


Table No 6: Important Parameters:

No	Parameter/ Variation	Energy Consumed, kWh	CO ₂ Emissions, MT
1	Total	125758	113.18
2	Maximum	13398	12.06
	Minimum	8036	7.23
3			9.43
4	Average	10479.83	0.10

CHAPTER III STUDY OF CO₂ EMISSION REDUCTION

The College has installed Roof Top Solar PV Plant of Capacity 7.4 kWp

We now calculate the reduction in CO₂ Emission due to Solar PV Plant.

Table No 7: Computation of Reduction in CO₂ Emission:

	Particulars	Value	Unit
No		7.4	kWp
1	Installed Roof Top Solar PV Plant Capacity	4	kWh/kWp
2	Average Daily Energy Generated		
3	Annual Generation Days	300	Nos
4	Annual Solar Energy Generated	8880	kWh
	1 kWh of Electrical Energy is equivalent to	0.9	Kg of CO ₂
5	TRYVITOR Electrical Energy to equal $(4) * (5)/1000$	7.99	MT
6	Annual Reduction in CO ₂ Emission = (4) * (5) /1000		

CHAPTER IV STUDY OF INDOOR AIR QUALITY

4.1 Importance of Air Quality:

Air: The common name given to the atmospheric gases used in breathing and photosynthesis.

By volume, Dry Air contains 78.09% Nitrogen, 20.95% Oxygen, 0.93% Argon, 0.039% carbon dioxide, and small amounts of other gases.

On average, a person inhales about **14,000 liters** of air every day. Therefore, poor air quality may affect the quality of life now and for future generations by affecting the health, the environment, the economy and the city's livability.

Air quality is a measure of the suitability of air for breathing by people, plants and animals.

According to Section 2(b) of Air (Prevention and control of pollution) Act, 1981 'air pollution' has been defined as 'the presence in the atmosphere of any air pollutant.'

As per Section 2(a) of Air (Prevention and control of pollution) Act, 1981 'air pollutant' has been defined as 'any solid, liquid or gaseous substance [(including noise)] present in the atmosphere in such concentration as may be or tend to be injurious to human beings or other living creatures or plants or property or environment

4.2 Air Quality Index:

An Air Quality Index (AQI) is a number used by government agencies to measure the air pollution levels and communicate it to the population. As the AQI increases, it means that a large percentage of the population will experience severe adverse health effects. The measurement of the AQI requires an air monitor and an air pollutant concentration over a specified averaging period.

We present herewith following important Parameters.

- AQI- Air Quality Index
- 2. PM-2.5- Particulate Matter of Size 2.5 micron
- 3. PM-10- Particulate Matter of Size 10micron

Table No8: Indoor Air Quality Parameters:

No	Location	AQI	PM-2.5	PM-10
No	Ground Floor			
	Main Building			
4	Power Systems Elec. Machine	100	62	82
I	Lab	95	60	80
2	Lab 5			73
3	Computer Lab-6	96	58	H COA

Am Pag

4	Flexo Lab	106	60	78
5	Lab-9	107	61	79
	First Floor	110	67	78
1	Director's Office	109	59	79
2	Seminar hall	100	60	67
3	Classroom-4	101	61	67
4	Classroom-3			
	Second Floor			
1	DOM Lab	105	59	69
2	Lab-21	106	60	78
3	Dept. Of Mech. Engg.	110	68	79
4	HOD Cabin	100	61	68
	Third Floor	110	68	78
1	Lab-31	110	61	79
2	Lab-33		68	79
3	Lab-34	111	68	78
4	Lab-35	111	00	10
	Fourth Floor	109	65	74
1	E & TC Dept	112	69	79
2	Lab-32	110	67	79
3	Dept Of CE	104	63	72
4	Basic Electronics Lab	106	60	78
				00
1	Workshop	115	70	82
	A ditarium Building			-
	Auditorium Building	109	64	75
1	Lab-45	108	67	74
2	Lab-40			
	MDA Duilding			
	MBA Building	96	58	73
	Ground Floor	106	60	78
1	Maintenance Lab	91	54	66
2	HOD Cabin	100	60	78
3	Physics Lab-102			
	First Floor			CH CO

	Minimum	90	54	04
	Maximum	115	70	82 64
3	Classroom	108	61	78
2	Room	106	60	77
1	Room	100	62	82
	Fourth Floor			
3	OLIVI/LO LOS			
3	SEM/EG Lab	95	57	72
2	Faculty Room	91	54	72
1	Room	91	55	72
	Third Floor			
2	Computer Lab			
1	Room	95	56	64
	Second Floor	100	60	67
3	Computer Center	90	54	07
2	Engg. Mech. Classroom	91	54	67
1	FE Classroom201,202	110	67	78 79

Page 17

CHAPTER V STUDY OF INDOOR COMFORT CONDITION PARAMETERS

In this Chapter, we present the various Indoor Comfort Parameters measured during the Audit.

The Parameters include:

- 1. Temperature
- 2. Humidity
- 3. Lux Level
- 4. Noise Level.

Table No9: Study of Indoor Comfort Condition Parameters:

No	Location	Temperature, ⁰ C	Humidity, %	Lux Level	Noise Level, dB
	Ground Floor				
	Main Building				
1	Power Systems Elec. Machine Lab	28.1	45	137	52
	Lab 5	29	48	139	46
2	Computer Lab-6	29.8	50	194	41
3		30	50	165	43
4	Flexo Lab	30	50	150	46
5	Lab-9				
	First Floor	00.0	49	159	45
1	Director's Office	30.2	49	178	49
2	Seminar hall	30.2	49	142	61
3	Classroom-4	30.4		146	60
4	Classroom-3	30.4	49	140	
	Second Floor			200	61
1	DOM Lab	30.5	49	203	61
2	Lab-21	30.5	50	226	
3	Dept. Of Mech. Engg.	30.2	49	169	41
4	HOD Cabin	30.4	50	187	43
	Third Floor				10
1	Lab-31	30.4	49	174	46
	Lab-33	30.4	49	178	46
2	Lab-34	30.4	49	203	50
3		30.4	49	236	49
4	Lab-35			MOICH	16

Amsul

	Eth Floor	30.2	49	169	43
	Fourth Floor	30.2	49	169	40
	E & TC Dept	30.2	49	148	47
2	Lab-32	30.2	51	163	43
3	Dept Of CE	30.2	50	179	40
4	Basic Electronics Lab	00.2			
	Maykahan	30.4	51	112	60
1	Workshop				
	Auditorium Building			440	54
1	Lab-45	30.4	49	110	56
 2	Lab-46	30.4	50	102	
<u></u>					
	MBA Building	30.1	50	229	46
	Ground Floor	30.1	50	223	42
1	Maintenance Lab	30.1	44	148	49
2	HOD Cabin	30.1	49	159	46
3	Physics Lab-102	30.2			
	First Floor		40	169	47
1	FE Classroom201,202	30.2	49	183	54
2	Engg.mech.Class room	30.2	50	196	54
3	Computer Center	30.3	44	130	-
	Second Floor			450	52
1	Room	30.4	49	150	54
2	Computer Lab	30.4	45	179	54
	Third Floor	7			
		30.5	49	196	52
1	Room Faculty Room	30.5	49	231	49
2	Sem/EG Lab	30.5	49	236	49
3	Selli/EG Lab				
	Fourth Floor	22.5	49	237	49
1	Room	30.5	50	236	56
2	Room	30.4	49	201	54
3	Classroom	30.4	51	237	61
	Maximum	30.5	44	102	40
	Minimum	28.1	44	102	• -

CHAPTER VI STUDY OF WASTE MANAGEMENT

6.1 Segregation of Waste at source:

The recyclable waste, like paper, plastic waste is segregated at source by making provision of different waste collection bins. The Plastic Waste is handed over to Authorized Plastic Recyclers.

Photograph of Waste Collection Bins:

6.2Organic Waste Management:

The recyclable waste, like paper waste is handed over to authorized waste collecting agent for further recycling.

Photograph of Bio Composting Unit:

6.3E-Waste Management: The E-Waste is disposed of through Authorized Agency.

CHAPTER-VII STUDY OF WATER CONSERVATION

It is recommended to make proper channels to collect the rain water and store the same in the open well which is in operation as on date.

The Collegeis also planning to make one open well alive, which is not in use, at present.

Page 22

CHAPTER-VIII STUDY OF ENVIRONMENT FRIENDLY INITIATIVES

8.1 Internal Tree Plantation:

The Institute has well maintained landscaped garden in the campus. Photograph of Tree plantation:

8.2 Provision of Sanitary Waste Incinerator:

The College has made provision of Sanitary Waste Incinerator for disposal of Sanitary Waste.

Photograph of Sanitary Waste Incinerator:

8.3 Creation of Awareness about Resource Conservation:

The College has displayed posters emphasizing on importance of Resource Conservation.

Photograph of Poster on Energy Conservation:

ANNEXURE-I:

VARIOUS AIR QUALITY, WATER QUALITY, NOISE & INDOOR COMFORT STANDARDS:

1. Category Wise Air Quality Index Values & Concentration of PM 2.5 & PM10:

.090.)				
No	Category	AQI Value	Concentration Range, PM 2.5	Concentration Range, PM 10
1	Good	0 to 50	0 to 30	0 to 50
1	Satisfactory	51 to 100	31 to 60	51 to 100
2	Moderately Polluted	101 to 200	61 to 90	101 to 250
3		201 to 300	91 to 120	251 to 350
4	Poor	301 to 400	121 to 250	351 to 430
5	Very Poor		250 +	430 +
6	Severe	401 to 500	250 .	

2. Recommended Water Quality Standards:

No	Designated Best Use	Criteria
1	Drinking Water Source without conventional Treatment but after disinfection	pH between 6.5 to 7.4 Dissolved Oxygen 6 mg/l or more
2	Drinking water source after conventionaltreatment and disinfection	pH between 6 to 9 Dissolved Oxygen 4 mg/l or more
3	Outdoor Bathing (Organized)	pH between 6.5 to 7.4 Dissolved Oxygen 5 mg/l or more
4	Controlled Waste Disposal	pH between 6 to 7.4

3. Recommended Noise Level Standards:

No	Location	Noise Level dB
1	Auditoriums	20-25
2	Outdoor Playground	55
3	Occupied Class Room	40-45
4	Un occupied Class Room	35
5	Apartment, Homes	35-40
6	Offices	45-50
7	Libraries	35-40
8	Restaurants	50-55
	Trootas.	

4. Thermal Comfort Conditions: For Non-conditioned Buildings:

Parameter	Value
Temperature	Less Than 33 ⁰ C
Humidity	Less Than 70%
	Temperature

Page 26